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ENERGY CRITERIA OF FRACTURE 

i«    The Griffith energr principle. 

In the  tour-Be of the last few years,   it has become clear 

the.t the Griffith equation for the tensile strength of a brittle 

solid cannot be applied in its original form to brittle fracture 

in normally ductile steels.    X-ray buck reflection photographs 

show*   '  that a thin layer at the surface of apparently quite 

brittle fractures of low carbon steels contains significant plastic 

distortion;   the plastic work p in this layer amounts to roughly 

6 2 
2 x 10    orgs/cm    if the fracture has occurred not too far below 

room temperature.    Compared with this value, the surface energy 

3 2 
(a few times 10    erg a/cm )   is negligiblej  consequently, if an 

expre^ion of the Griffith type can be used at all in this case, 

the surface energy (representing the work for creating unit area 

of the surface of fracture)   has to be replaced by the plastic 

(2) surface work p.    Thus the crack propagation condition would bev 

<r     S   f$f (1) 

The presence of considerable plastic distortion at the surface 

of fracture raisee the question under what conditions the Griffith 

principle of virtual work can be applied to fractures accompanied 

by plastic deformation. This principle can be started in the 

following manners let dW be the free energy required for increasing 

i .-• *f'awe**^ 
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the length* of a creek from C to C + dc,   cnri -dU   the elastic 

energy released simultaneously in the specimen if this is hsld 

between rigidly fl^vd grips  HO that the external forces cannot 

do work.     The critical length of the crack above which it can 

propagata spontaneously is then determined by the condition 

dW =    -dU. (2) 

It is easily seen that the assumption of rigidly fixed grips 

is not essential; the same result is obtained if the crack prop- 

agation is essuned to occur under constant load. Let M(c) be 

the clastic compliance, i.e., the reciprocal spring constant, of 

a specimen containing a crack of length c; thus, 

x = HF (3) 

where F the tensile force acting upon the specimen and x its 

elastic elongation. The elastic energy of a specimen contain- 

ing a crack of length c is 

8210' 

0=r F.ax=^ 
Jy = 0 

dU = J|~ <JM + MFidFj 

U) 

(5) 

dM = ~*-dc is the increment of the elastic compliance due to 

As in the original work of Griffith, only two-diuieusional 
cases (cracks in plats-specimens) will be considered here 
fox- simplicity.    The general results can be easily extended 
to three-diaensional cases. 
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the increase by dc of the crack length- 

If the crack length increases while the opeeimen is held 

between rigidly fixed grips,  x = MF = const,  and 

dx = MdF + FcM = 0; (6) 

substitution of MdF = -FdM in eq.   (5)   gives 

(•>, = ^J* • (7) 

On the other hand,  If the crack propagates while  the load 

1B kept constant (dF = 0),  eq.  (5)  gives 

1 / mi F2dM (tt\ 
I VaU)F -    ~2— ' *3' 

At the same time, the force F does the work 

dL = F-dx - F2dM, (9) 

since( at constant F, dx - FdM. 

Eqs. (8) aiid (9) show that, if the crack propagates at 

constant load, half of the external work is stored as additional 

elastic energy of the specimen, and the other half is available 

for increasing the free energy of the crack. If the length of 

the crack exceeds the critical value at which eq. (2) is just 

satisfied, the work of the applied force is acre than sufficient 

to provide the increment of its fzee energy; the balance creates 

kinetic energy and accelerates the rate of crack propagation. 

If, on the other hand, the crack propagates between fixed 

grips, the elastic energy of the specimen decreases according to 

1 im 
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eq. (7), end its decrement is available for increasing the free 

energy cf the crack and the kinetic energy. Comparison of eqs. 

(7), (8), and (9) shows that the energy available for crack prop- 

agation at fixed load is the same as at fixed grips; in the foimer 

case, -dU in eq. (?) has to be replaced by dL - (dU)F which Is 

numerically equal to ~(dU) for the same increment dc of the cra± 

length* 

In the present paper, two questions will be treated that have 

been widely discussed in connection with the brittle fracture of 

structural and snip steel, and on which a wide divergence of 

opinions has arisen. They are: 

A) lioes the Griffith equation- 

represent a necessary and sufficient condition of 

completely brittle fracture? And is the present 

writer's eq. (1) a necessary condition of brittle 

fracture in low carbon steels? 

B) Under what conditions can the Griffith principle, eq. (2), 

be applied to fractures involving plastic deformation? 

|        2. The Griffith equation as a necessary and sufficient condition 

of completely brittle fracture. 

It i3 obvious that eq. (10) is a necessary aondition of crack •. 1 
c 

propagation in -s. completely brittle specimen under tension. If it j 

is aot, satisfied, propagation of the crack with the accompanying 

. 7 



increase of its (fiee) surface energy would violate the first or 

the second law of thornodyna-aies.  In particular, thermal fluctua- 

tions (disruption of atomic bonds at the tip of the crack by theiiaal 

activation) cannot propagate the crack if the Griffith equation 

is not satisfied, because any such process would result in the 

creation of free energy from tnemai energy without heat flowing 

from one reservoir to another of a lower temperature. Of course, 

thermal fluctuations of free energy do occur} however, they cannot 

lead to jny significant crack propagation because the greatest 

anergy fluctuation that may arise with any probability amounts 

! 

i: 

I 
From the fact that the Griffith equation is a necessary condi- 

tion of completely brittle fracture, it does not follow that it is 

also a sufficient condition. However, it can be proved that onco 

the condition is satisfied, crack propagation is not merely possible 

but is hound to follow. This can be shown by proving that, if the 

applied stress has the value given by the Griffith equation, the 

stress concentration at the tip of the crack reaches the value of 

the molecular cohesion (theoretical, strength) at which fracture is 

bound to take place. 

The molecular cohesion of a brittle material can be estimated 

in the following well known way. When a rod of unit cross sectional 

area breaks with a saocth surface of fracture perpendicular to the 

axis of the rod, two new surfaces of unit area are created; the 

work required for this is 2a( a = surface energy). This work 

H 

\ 

to a few electron volts which is equivalent to the disruption of 

a few individual atomic bonds at the tip of the crack. 

.- -:.W. 
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its aone against trie intormoleculr-r attractive forces ns the two 

fragments ars pulled apart. Fig« 1 shows the variation of the 

molecular forces between the two fragments, per unit of cross 

nectional area, as a function of the distance d between the layers 

of molecules in the two fragments that ere adjacent to "the surface 

of separation. The force is zero when d = b = the molecular spacing 

in the absence of stressj it rises to a maximum or  which is 
m 

the molecular cohesion ana then falln, to zero with increasing 

separation of the fragments. The area below the curve is the work 

of fracture per unit of the cross sectional areaj i.e., it is equal 

to 2a . At the maximum of the curve in Fig. 1, the cnount of 

energy represented by tha shaded area below the curve aust be pre- 

sent between all neighboring pairs of molecular (or atomic) planes 

perpendicular to the tension: 

it is identical with the elastic 

energy stored in the material 

between two adjacent atomic 

planes.  If, for an order-of- 

aatrriitude estimate, Hooke's 

law is assumed to be vnlid up 

to the theoretical maximum  o~ 

of the stress, the density of 

elastic energy between two 

atomic planes of unit area, 

spaced at b, is b« ^ _"/2R. If 

it is assumed that the shaded 

d = b d 
Fig. 5 

. 

sac? 
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area it, about one-half of the total  area below the curve tuid there- 

I 

£ 

fore approximately equal to a   ,   the relationship 

b • ~nr = • 
gives the order of magnitude of the molecular strength as 

(U) 

»•*«"- (12) 

The next question is: what is the value of the applied tensile 

stress at which the critical value <r  is reached at the tip of 
m 

the cru.uk? The six-ess concentration factor of a surface crack of 

(3) 
depth c and root radius p   isv 

„ nr 
4 - 2j p      I (13) 

this relationship shows that the maximum stress would be infinitely 

high for any finite value of fl" and c in an elastic continuum con- 

taining a perfectly sharp crack, and therefore the tensile strength 

would be zero. The reason why brittle solids have a finite strength 

lt-.es  in the atoaic structure of matter. Fig. 1 shows thai. Hooke's 

law breaks down when the increment of the atomic spacing becomes 

comparable ir. magnitude with the atomic spacing itself: near the 

tip of the crack the stress versus strain curve levels out, and 

the situation can be regarded roughly as if a certain region at tha tip, 

comparable in linear dimensions with the interatomic spacing, would be 

under the constant stress ar    instead of obeying Hooke's law. 

This case of the .\aws of elasticity ceasin-j to be valid in a 

region at the tip of the crack hat; been treated by L. F&ppl   and, 
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(5) in particular, by Neubar 

iMeuber proved the following 

theorem:  let there be a region 

of linee.r dimensions 6 at the 

tip of the crack (Fig. 2), so 

that the specimen is Hookean 

elastic outside this region, 

whereas the stress in the region 

is approximately constant at the 

value existing at its boundary; 

the ratio of the stress in the 

reeior to the tensile stress 

applied to the specimen is then equal to the stress concentration factor 

of a crack of the same length and of" the root radius t /2  in a purely 

Hookean elastic material.  (The quantity t   is assumed to be small 

compared with the length c of the crack which itself must be snail 

compared with the dimensions of the specimen,) 

In the present cas«, the diameter of the region in which Hooke's 

law breaks down and the stress levels out is obviously of ths order of 

magnitude cf the interatomic spacing b; if it is assumed to be 

approximately 2b, Neuber's theorem indicates that the effective stress 

concentration factor is that of a crack of tip radius b in a purely 

Hookean specimen. According to eq* (13)» this is 

q=2Yb"' (13a) 

Thua, the value of the applied tensile stress at which the molecular 

strength is ro&ched at the tip of the crack is given by 

O _ - or -2 b  * (14) 

' J , —,J_. a •~— •—— 

: 

• •afMiu^-iyill     , 

•.•*•?>• 

msammg* 



if  <r  is replaced from (12), the tensile strength O' Ifl obtained as 

<r ^ V"^- (15) 

vrhich, within the accuracy of the estimate, is identical with the 

Griffith equation (10). 

This derivBtion of the Griffith equation directly fi-om the stress 

concentration factor of the crack shows that, when the applied tensile 

stress has the value given by the equationi  the stress at the tip of 

the crack reaches the highttt value t&* can be withstood by the 

interatomic forces in the material.  Any further straining is bound 

to produce crack propagation and fracture- In other words, the Griffith 

equation represents not only a necessary but also a sufficient condition 

of fracture in a completely brittle specimen. 

3. Can the Griffith principle be applied to ductile fracture? 

In recent years the view has been expressed that the Griffith 

energy principle eq. (2) may be applied to all types of fracture, not 

only to essentially brittle ones.  In what follows, it should be 

pointed out that this is not so:  the principle can only be applied if 

plastic deformation is cither absent or confined to a thin layer at 

the crack walls so that the bulk of the specimen is still elastic, 

Fig. 3 indicates the manner of crack propagation in a purely 

elastic materiel: owing to elastic strain release around the crack, 

its walls are pulled apart, send its length increases. Fig. 4, on the 

other hand, shows one of the simplest, types of ductile fracture ' ', 

fnich as is observed in aluminum single crystal8 or (nolycrystall Irm) 

plates of ductile metals in tension.  The crack (which in this case ha? 

. 7 
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a square cross section) ic propagated by slip in the pianos AD i CD 

ana EB + CF, where D and C ere line.?, perpendicular to the plane of 

the sketch; in the course of this process the cross section of the 

crack increases until fracture is complete. 

The fundamental difference between the propagation of the 

brittle crack shown in Fig. 3 and the ductile mechanism of Fig* U  is 

that the former is based essentially on the elasticity of the 

Qttltsrial. whi±e the latter could work'in the same way even if the 

elastic moduli were infinitely high. The Griffith equation (10) shows 

directly that tlie tensile strength of a brittle material would rise to 

infinity with an infinite increase of the value of Young's modulus; in 

euch a materiel, the crack could not open up because there would be no 

elastic strains to release- On the ether hend, the slip mechanism 

shown in Fig. 4 is quite independent of the elastic moduli. 

It is immediately obvious that the force required for propagating 

!,! 
V 

the crack in Fig.  U cannot be derived frCQ the Griffith principle 

eq.   {?_) =     Its value ic  simply s 
P = I • A (16) 

where I is the yield stress of the material in tension and A the 

projection of the areas AB plus CD on the plane perpendicular to the 

direction of the tension; if F satisfies eq. (16), the plastic 

deformation that opens up the crack can progress, and the crack 

& propagates. The elastic moduli do not appear in eq. (16); th^y could 

be infinitely high without any consequence to the propagation cf the 

crack. On the other hand, infinitely high elastic moduli would meke 

the right head side of #\.   (7)  vanish:  this shown that the tensile 

.r^r 
k<4MOBfc> 
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utrer^t.5. obtained by cny cppliccTion of the Griffith energy principle 

would T±I,C  to infinity v.lth the elastic moduli. 

The conclusion is, then, that ths Griffith energy principle 

con only be applied to fully or substantial!}' brittle fracturesj 

ductile fractures are quite outsidfl xtj,  scope. 

In arguing the applicability of the elastic energy release 

pxinciple to ductile fra<*-turpn; occasionally the point has been made 

that if the specimen is long enough, the elastic energy stored in it 

snould bo sufficient to produce rapid crack propagation even if the 

energy absorption of the crack is as high as it is in typically 

ductile fractures. The answer to this is thnt a fest fracture is not 

necessarily a brittle fracture (i*e., a fracture involving very low 

energy absorption). Any ductile fracture can be made to run fsst, at 

least from a certain sta^e onwrrds, if the specimen is connected in 

series with a large enough spring (or, what is the same, if the specimen 

is long enough). It can be shown that the condition for a ductile 

fracture to become a fast fracture is not eq. (2) but equality of the 

(second derivatives of W and U#. 

L*    The writer's crack propagation condition for brittle fracture in 

' normally ductile steels. 

I 
As mentioned in the fir.;t Section, the present writer has 

1 
suggested that brittle fracture in ductile steels may obey the crack 

To be published in a separate papr> 
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proi.j-rrati.cn condition 

or   *   Yf (1) 

which results if, in the Griffith equuticn (10}, the surface energy 

is replaced by the surface plastic work p.  It can be obtained by 

starting from the Griffith principle of elastic energy release eq. (2) 

and equating the free energy required for producing unit area of the 

crack wail to p instead of a . 

The first question is:  Can the Griffith energy principle be 

applied to a fracture process that involves plastic deformation? It 

wai; seen in Section 2 that the Griffith equation can be derived from 

tlie elastic stress concentration factor of the crack; however, can 

this be done if plastic deformation takes place and redistributes 

stresses at the tip of the crack? The Neuber principle, mentioned in 

Section 2, shows that the stress concentration factor cap. be calculated 

on the basis of the classical tneory of elasticity if the plastically 

deformed region is stall cor.pareci with the length of the crack. In 

that case it can be treated in the manner explained in connection with 
* 

r j.{j . *: the stress concentretion factor i« the same as that of a crack il I ! in a purely elastic body atth a tip radius equal to half of the 

»I diameter of the plastically deformed region.  In fact, this case 1H only 

quantitatively different from that of the completely brittle material 

it in which, in order to take into account the atomic structure of matter, 
II 

the same consideration had to be applied to the region at the tip of 

the crack in which the stress distribution flattens out owinb to the 

maximun of the  force-displacenpnt curve,   Fig.   1.     The only difference 

is that in the Griffith cafe the dir~eier cf the non-Hookcan region is 

.- - 
'   1  ,. ,   .,„ . • *tm*   ~~——"      ' '        ~   ""*•" # 
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of the order of the interatomic spacings, while in the brittle 

fracture of steel it is about twice the thickness t of the plas- 

tically deformed layer at the surface of the crack. According to 

the Inglis equation (13), the stress concentration factor is then 

q = 2 -/T (17) 

X-ray measurements indicate    that t is of the order of 0.2 to 

0.4. mm in low carbon steels broken not too far above or below room 

temperature. 

In the Griffith theory, the tensile strength of the specimen 

was obtained by dividing the molecular cohesion by the stress 

concentration factor. What is the quantity corresponding o the 

molecular cohesion in the brittle fracture of steels? The clue is 

(7) 
given by the important observation * ' that in steels the crack 

does not propagate continuously: before it has broken through a grain 

boundary, unconnected snuill cracks arise in grsinc thead of the tip 

of the main crack. This shows at once that the brittle strength of 

steel cannot have the order of magnitv.de of the theoretical strength 

(molecular cohesion); in fact, it must be quite lew if independent 

fracture processes can start ahead of the main crack at point? where 

the stress cannot be much e.bove- the iieid stress. This may be due to 

the presence of numerous invisible cracks scattered in the materirlj 

or to the well known fact that plastic deformation can produce high 

microscopic internal stresses and subsequently creek formation. It 

,<:eeBiF thi-t 11'*' cleavage strength of the materiel at the tip of the 

3te *m.mt-f""mm"' ' "~ 
-—- - -. •_* ~— _-_.-..    —.-__ -^..: isS^i:—   «ljt|jm^i1i  . 
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crack is not,  or not much,  higher than xhe ordinary brittle  strength 

of steel obtained experimentally as the  stress at which brittle 

fracture occurs.     Since the cleavage  Strength of  .^teel depends on the 

plestic strain v.hich is difficult to estimate in the small region 

around the tip of li crack, only  a rough idea of its magnitude can  be 

obtained;  it is probably sonev;here between 100,000 and 200,000 psi 

for a low carbon steel.    For a tensile stress of,  say,  20,000 psi, 

therefore,  a stress concentration factor between 5 and 10 would be 

needed.    If the thickness t of the cold worked layer ir. eq.   (16)   is 

taken as l/lOO inch,  the necessary crack length 

2 

° = fa**     = ~*  '  ? <18) 

is between i/lo inch and 1/4 inch; for a tensile stress of 10,000 psi, 

the stress concentration factor is four times higher, and the necessary 

crack length is between 1/4 inch and 1 inch. These orders of magnitude 

appeal- quite reasonable in the light of experimental observations. 

The last question tj bo discussed is whether eq. (1^ represents 

a sufficient as well as a necessary condition of cr»ck  propagation^ 

At this point a significant difference appears between the fracture, 

say, of glass and of low carbon steel. The stress concentration in 

glass IR not limited by plastic deformation; in st^el, honevei.-, the 

stress at the tip of the crack ctjinot exceed the yield stress multiplied 

by a plastic constraint factor vhich n *>c.v c.bly has a value between . Knd 

3   . If, therefore, trie cleavage strength it; higher than 2 or 3 

timei the yield stress x in tension, the tensile stress at the tip of 

the crack cannot reach the ire.cture xevei no matter how nigh the strer.i; 

/ 
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concentration factor (i.e., no matter how low the jpplied stress in 

that can produce the highest possible stress 21  or 31  at the tip of 

the crack). An additional point of great importance is that the yield 

stress of steel increases with the rate of defornu ticri sere rapidly 

thta the yield stresses of mc?t metals; between the usual rates of 

"stttic" Le^ts and the fastest rates at which Measurements could be 

rn. riled out it SSCMS to increase by n  factor approaching 3* It 

se&js that, in typical ca:;es of brittle fracture In low carbon steels, 

the velocity increase of the yield stress is the salient feature of 

the phenomenon. Although cleavage fracture can aris^e at slow 

deformation rates, it then requires so much plastic defoimation for 

producing the necessary plastic constraint that the resulting cleavage 

frecture is anything but brittle; its energy absorption may be almost 

equal to that of a uuctile fracture. Typical brittle fracture in a 

low carbon steel, therefore, can occur usually only after the crack 

propagation has reached a sufficiently high velocity; in laboratory 

eacpeiiinents, the fracture is almort always initiated by some ductile 

(fibrous) cracking, accompanied by considerable local plastic deforma-- 

tion. 

It can be said, therefore, that a characteristic feature oi 

brittle fracture in ductile steels is the enormous decrease of the 

crack propagation work with increasing velocity of the crack. The 

sraelc propagation condition eq. (1) may well be fulfilled for a 

rapicuy running crack with its low "raise of p «t no*  for a stationary 

creek, the prostration of which mny require, p«=»r unit of crack lengthy 

an aaaUHgy oi » higher order of magnitude. In such oases^ cleavage 

I 
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frticture is initiated In laboratory experiments fay large deforma- 

tions producing strong plastic constraint and usually some fibrous 

cracking}  the plastic deformation may have to extend across the 

entire specimen, so t&it fche yield load has to be reached before 

cleavage cracking can start. Afte_ a cleavage crack has arisen, it 

may accelerate rapidly provided that the condition eq. (1) is 

satisfied, 30 that there is sufficient elastic energy released during 

the crack propagation to increase the.kinetic energy around the 

running crack. In this «««««. it may be assumed that eq. (1) 

represents the condition for the fast, and therefore, brittle, 

propagation of a cleavage cr&ck. The initiation of the cleavags 

crack, however, may have to be done by ductile crack pj^opfigstion not 

governed by eq, (1) or cmy other brittle crack propagation condition 

derived from the, Griffith principle eq. (2). 

It should be remarked that many service fractures seem to stare 

without significant plastic deformation in spite of static loading- 

An interesting possibili ty for understanding this has recently arisen 

and should be discussed in a subsequent paper. 

Tnis paper represents an expanded version of remarks that were 

stimulated by the work done under Office of Naval Research Contract 

No. N5ori-07870, and contributed to the Conference on Brittle Fracture 

Mechanics held at the: Massachusetts Institute of Technology on 

October 15 and 16, 1953, under the auspices of the Committee on Ship 

Stractural Design, advisory to the Snip Structure Committee, National 

Research Council. 
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NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE F \CT TKAT 1 HZ 
GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY 5 JPFLJED THE 
SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED B' 
IMPLICATION OR OTHERWISE A3 IN ANY MANNER LICENSING THE HOLDER OF ANY OTHER 
PERSON OR CORPORATION   OR CONVEYING ANY RIGHTS OR PERMISSION* TO MANUFACTURE. 

)R SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RSJLATfB TBBBBSQ,      j 

I 

Reproduced    by 

DOCUMENT SERVICE CEH7E1! 
KNOT! BUILDING, DAYTON, 2, OHIO 

! i 
I i 

'**$£' 

1 

Jliiijpt3l.y. •*%'^«x*' 

kfRHMMK w JtKWfl^. J§H4MJ»Mt HMl MRm -«^i->»** «-. 


	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024

